Monotone concave operators: An application to the existence and uniqueness of solutions to the Bellman equation∗
نویسندگان
چکیده
We propose a new approach to the issue of existence and uniqueness of solutions to the Bellman equation, exploiting an emerging class of methods, called monotone map methods, pioneered in the work of Krasnosel’skii (1964) and Krasnosel’skii-Zabreiko (1984). The approach is technically simple and intuitive. It is derived from geometric ideas related to the study of fixed points for monotone concave operators defined on partially order spaces.
منابع مشابه
On existence and uniqueness of solutions of a nonlinear Volterra-Fredholm integral equation
In this paper we investigate the existence and uniqueness for Volterra-Fredholm type integral equations and extension of this type of integral equations. The result is obtained by using the coupled fixed point theorems in the framework of Banach space $ X=C([a,b],mathbb{R})$. Finally, we give an example to illustrate the applications of our results.
متن کاملFixed point theorems for generalized concave operators and applications to fractional differential equation boundary value problems
In this paper, by introducing the concept of a generalized concave operator and the properties of cone and monotone iterative technique in ordered Banach spaces, some new existence and uniqueness theorems of fixed points for the operator under more extensive conditions are obtained. Finally, as applications, we apply the results obtained in this paper to study the existence and uniqueness of po...
متن کاملTHE REVIEW OF ALMOST PERIODIC SOLUTIONS TO A STOCHASTIC DIERENTIAL EQUATION
This paper proves the existence and uniqueness of quadratic mean almost periodic mild so-lutions for a class of stochastic dierential equations in a real separable Hilbert space. Themain technique is based upon an appropriate composition theorem combined with the Banachcontraction mapping principle and an analytic semigroup of linear operators.
متن کاملExistence and Uniqueness of Solutions to Nonlinear Evolution Equations with Locally Monotone Operators
In this paper we establish the existence and uniqueness of solutions for nonlinear evolution equations on Banach space with locally monotone operators, which is a generalization of the classical result by J.L. Lions for monotone operators. In particular, we show that local monotonicity implies the pseudo-monotonicity. The main result is applied to various types of PDE such as reaction-diffusion...
متن کاملPositive solutions for discrete fractional initial value problem
In this paper, the existence and uniqueness of positive solutions for a class of nonlinear initial value problem for a finite fractional difference equation obtained by constructing the upper and lower control functions of nonlinear term without any monotone requirement .The solutions of fractional difference equation are the size of tumor in model tumor growth described by the Gompertz f...
متن کامل